Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
J Appl Microbiol ; 132(2): 1319-1329, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34480830

RESUMEN

AIMS: This study aimed to identify virulence-associated genes and functions that affect disease development on pear caused by Erwinia amylovora EaUMG3 isolated from Iran. METHODS AND RESULTS: A mini-Tn5 transposon library was generated in EaUMG3. An E. amylovora mutant that had lost its ability to cause lesions on immature pear fruits, was selected for further analysis. This mutant was shown to have a transposon insertion in yqhC, a gene belongs to the AraC family of transcriptional regulators. A mutant of the wild-type EaUMG3 carrying an unmarked deletion of the yqhC gene was created using pDMS197. The Ea∆yqhC mutant showed reduced disease progression on immature pear fruits and pear plants, reduced motility and significantly lower levels of the virulence factors siderophore and amylovoran. Complementation with yqhC cloned in pBBR1MCS restored disease progression and the level of virulence factors to near wild type. CONCLUSION: YqhC transcriptional regulator is necessary for full virulence of E. amylovora. In addition, this regulator affects virulence factors such as siderophore production, amylovoran production, and motility. SIGNIFICANCE AND IMPACT OF STUDY: The identification of a novel transcriptional regulator with strong impact in the pathogenesis of E. amylovora, an organism causing significant economic losses in fruit production.


Asunto(s)
Proteínas Bacterianas , Erwinia amylovora , Enfermedades de las Plantas/microbiología , Pyrus , Proteínas Bacterianas/genética , Erwinia amylovora/genética , Erwinia amylovora/patogenicidad , Genes Bacterianos , Pyrus/microbiología , Virulencia/genética
2.
Plant Physiol ; 188(2): 1350-1368, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34904175

RESUMEN

Pathenogenesis-related (PR) proteins are extensively used as molecular markers to dissect the signaling cascades leading to plant defense responses. However, studies focusing on the biochemical or biological properties of these proteins remain rare. Here, we identify and characterize a class of apple (Malus domestica) PR proteins, named M. domestica AGGLUTININS (MdAGGs), belonging to the amaranthin-like lectin family. By combining molecular and biochemical approaches, we show that abundant production of MdAGGs in leaf tissues corresponds with enhanced resistance to the bacterium Erwinia amylovora, the causal agent of the disease fire blight. We also show that E. amylovora represses the expression of MdAGG genes by injecting the type 3 effector DspA/E into host cells and by secreting bacterial exopolysaccharides. Using a purified recombinant MdAGG, we show that the protein agglutinates E. amylovora cells in vitro and binds bacterial lipopolysaccharides at low pH, conditions reminiscent of the intercellular pH occurring in planta upon E. amylovora infection. We finally provide evidence that negatively charged polysaccharides, such as the free exopolysaccharide amylovoran progressively released by the bacteria, act as decoys relying on charge-charge interaction with the MdAGG to inhibit agglutination. Overall, our results suggest that the production of this particular class of PR proteins may contribute to apple innate immunity mechanisms active against E. amylovora.


Asunto(s)
Aglutinación/genética , Resistencia a la Enfermedad/genética , Erwinia amylovora/patogenicidad , Interacciones Huésped-Patógeno , Malus/genética , Malus/microbiología , Enfermedades de las Plantas/genética , Biomarcadores , Productos Agrícolas/genética , Productos Agrícolas/microbiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Enfermedades de las Plantas/microbiología
3.
Mol Plant Pathol ; 22(11): 1332-1346, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34382308

RESUMEN

We showed previously that nitrogen (N) limitation decreases Arabidopsis resistance to Erwinia amylovora (Ea). We show that decreased resistance to bacteria in low N is correlated with lower apoplastic reactive oxygen species (ROS) accumulation and lower jasmonic acid (JA) pathway expression. Consistently, pretreatment with methyl jasmonate (Me-JA) increased the resistance of plants grown under low N. In parallel, we show that in planta titres of a nonvirulent type III secretion system (T3SS)-deficient Ea mutant were lower than those of wildtype Ea in low N, as expected, but surprisingly not in high N. This lack of difference in high N was consistent with the low expression of the T3SS-encoding hrp virulence genes by wildtype Ea in plants grown in high N compared to plants grown in low N. This suggests that expressing its virulence factors in planta could be a major limiting factor for Ea in the nonhost Arabidopsis. To test this hypothesis, we preincubated Ea in an inducing medium that triggers expression of hrp genes in vitro, prior to inoculation. This preincubation strongly enhanced Ea titres in planta, independently of the plant N status, and was correlated to a significant repression of JA-dependent genes. Finally, we identify two clusters of metabolites associated with resistance or with susceptibility to Ea. Altogether, our data showed that high susceptibility of Arabidopsis to Ea, under low N or following preincubation in hrp-inducing medium, is correlated with high expression of the Ea hrp genes in planta and low expression of the JA signalling pathway, and is correlated with the accumulation of specific metabolites.


Asunto(s)
Arabidopsis , Proteínas Bacterianas/genética , Erwinia amylovora , Nitratos/metabolismo , Arabidopsis/microbiología , Ciclopentanos/farmacología , Erwinia amylovora/genética , Erwinia amylovora/patogenicidad , Regulación Bacteriana de la Expresión Génica , Oxilipinas/farmacología , Enfermedades de las Plantas/microbiología , Virulencia/genética
4.
Sci Rep ; 11(1): 8685, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888770

RESUMEN

Most of the commercial apple cultivars are highly susceptible to fire blight, which is the most devastating bacterial disease affecting pome fruits. Resistance to fire blight is described especially in wild Malus accessions such as M. × robusta 5 (Mr5), but the molecular basis of host resistance response to the pathogen Erwinia amylovora is still largely unknown. The bacterial effector protein AvrRpt2EA was found to be the key determinant of resistance response in Mr5. A wild type E. amylovora strain and the corresponding avrRpt2EA deletion mutant were used for inoculation of Mr5 to induce resistance or susceptible response, respectively. By comparison of the transcriptome of both responses, 211 differentially expressed genes (DEGs) were identified. We found that heat-shock response including heat-shock proteins (HSPs) and heat-shock transcription factors (HSFs) are activated in apple specifically in the susceptible response, independent of AvrRpt2EA. Further analysis on the expression progress of 81 DEGs by high-throughput real-time qPCR resulted in the identification of genes that were activated after inoculation with E. amylovora. Hence, a potential role of these genes in the resistance to the pathogen is postulated, including genes coding for enzymes involved in formation of flavonoids and terpenoids, ribosome-inactivating enzymes (RIPs) and a squamosa promoter binding-like (SPL) transcription factor.


Asunto(s)
Erwinia amylovora/patogenicidad , Perfilación de la Expresión Génica , Malus/microbiología , Transcripción Genética , Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno
5.
PLoS One ; 16(4): e0250280, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33861806

RESUMEN

Fire blight is a destructive plant disease caused by Erwinia amylovora affecting pome fruit trees, and responsible for large yield declines, long phytosanitary confinements, and high economic losses. In Portugal, the first major fire blight outbreaks occurred in 2010 and 2011, and although later considered eradicated, the emergence of other outbreaks in recent years stressed the need to characterize the E. amylovora populations associated with these outbreaks. In this regard, CRISPR genotyping, assessment of three virulence markers, and semi-quantitative virulence bioassays, were carried out to determine the genotype, and assess the virulence of thirty-six E. amylovora isolates associated with outbreaks occurring between 2010 and 2017 and affecting apple and pear orchards located in the country central-west, known as the main producing region of pome fruits in Portugal. The data gathered reveal that 35 E. amylovora isolates belong to one of the widely-distributed CRISPR genotypes (5-24-38 / D-a-α) regardless the host species, year and region. Ea 680 was the single isolate revealing a new CRISPR genotype due to a novel CR2 spacer located closer to the leader sequence and therefore thought to be recently acquired. Regarding pathogenicity, although dot-blot hybridization assays showed the presence of key virulence factors, namely hrpL (T3SS), hrpN (T3E) and amsG from the amylovoran biosynthesis operon in all E. amylovora isolates studied, pathogenicity bioassays on immature pear slices allowed to distinguish four virulence levels, with most of the isolates revealing an intermediate to severe virulence phenotype. Regardless the clonal population structure of the E. amylovora associated to the outbreaks occurring in Portugal between 2010 and 2017, the different virulence phenotypes, suggests that E. amylovora may have been introduced at different instances into the country. This is the first study regarding E. amylovora in Portugal, and it discloses a novel CRISPR genotype for this bacterium.


Asunto(s)
Brotes de Enfermedades , Erwinia amylovora , Genes Bacterianos , Infecciones por Bacterias Gramnegativas/microbiología , Enfermedades de las Plantas/microbiología , Factores de Virulencia/genética , Erwinia amylovora/genética , Erwinia amylovora/patogenicidad , Portugal , Virulencia/genética
6.
Mol Plant Pathol ; 22(2): 255-270, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33314618

RESUMEN

Erwinia amylovora is the causative agent of the devastating disease fire blight of pome fruit trees. After infection of host plant leaves at apple shoot tips, E. amylovora cells form biofilms in xylem vessels, restrict water flow, and cause wilting symptoms. Although E. amylovora is well known to be able to cause systemic infection, how biofilm cells of E. amylovora transit from the sessile mode of growth in xylem to the planktonic mode of growth in cortical parenchyma remains unknown. Increasing evidence has suggested the important modulatory roles of Hfq-dependent small RNAs (sRNAs) in the pathogenesis of E. amylovora. Here, we demonstrate that the sRNA RprA acts as a positive regulator of amylovoran exopolysaccharide production, the type III secretion system (T3SS), and flagellar-dependent motility, and as a negative regulator of levansucrase activity and cellulose production. We also show that RprA affects the promoter activity of multiple virulence factor genes and regulates hrpS, a critical T3SS regulator, at the posttranscriptional level. We determined that rprA expression can be activated by the Rcs phosphorelay, and that expression is active during T3SS-mediated host infection in an immature pear fruit infection model. We further showed that overexpression of rprA activated the in vitro dispersal of E. amylovora cells from biofilms. Thus, our investigation of the varied role of RprA in affecting E. amylovora virulence provides important insights into the functions of this sRNA in biofilm control and systemic infection.


Asunto(s)
Erwinia amylovora/metabolismo , ARN Bacteriano/fisiología , Factores de Virulencia/metabolismo , Biopelículas , Celulosa/genética , Erwinia amylovora/genética , Erwinia amylovora/patogenicidad , Hexosiltransferasas/genética , Movimiento , Polisacáridos Bacterianos/genética , Regiones Promotoras Genéticas , Sistemas de Secreción Tipo III/genética , Factores de Virulencia/genética
7.
FEMS Microbiol Lett ; 367(20)2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33152083

RESUMEN

Erwinia amylovora is the causal agent of fire blight, an economically important disease of apples and pears. As part of the infection process, Er. amylovora propagates on different plant tissues each with distinct nutrient environments. Here, the biochemical properties of the Er. amylovora adenine permease (EaAdeP) are investigated. Heterologous expression of EaAdeP in nucleobase transporter-deficient Escherichia coli strains, coupled with radiolabel uptake studies, revealed that EaAdeP is a high affinity adenine transporter with a Km of 0.43 ± 0.09 µM. Both Es. coli and Er. amylovora carrying extra copies of EaAdeP are sensitive to growth on the toxic analog 8-azaadenine. EaAdeP is expressed during immature pear fruit infection. Immature pear and apple fruit virulence assays reveal that an E. amylovora ΔadeP::Camr mutant is still able to cause disease symptoms, however, with growth at a lower level, indicating that external adenine is utilized in disease establishment.


Asunto(s)
Erwinia amylovora/genética , Erwinia amylovora/metabolismo , Genes Bacterianos/genética , Malus/microbiología , Enfermedades de las Plantas/microbiología , Pyrus/microbiología , Erwinia amylovora/patogenicidad
8.
J Bacteriol ; 202(22)2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32839177

RESUMEN

The Gram-negative enterobacterium Erwinia amylovora causes fire blight disease in apple and pear trees. Lipopolysaccharides and the exopolysaccharide amylovoran are essential E. amylovora virulence factors. We found that mutations in rfbX disrupted amylovoran production and virulence in apple fruits and tree shoots and that the deletion of yibD suppressed the rfbX mutant phenotype. The level of expression of yibD was about 10-fold higher in the ΔrfbX mutant than the wild type. A forward genetic suppressor screen in the ΔrfbX mutant uncovered multiple mutations in yibD and supported the conclusion that the virulence defect of rfbX mutants is due to reduced amylovoran production. The yibD and rfbX genes are expressed as a two-gene operon, yibD rfbX The rfbX gene encodes a previously uncharacterized putative polysaccharide subunit transporter, while yibD encodes a predicted glycosyltransferase. Mutation of rfbX did not have a detectable effect on lipopolysaccharide patterns; however, the overexpression of yibD in both the wild-type and ΔyibD ΔrfbX genetic backgrounds disrupted both amylovoran and lipopolysaccharide production. Additionally, the overexpression of yibD in the ΔyibD ΔrfbX mutant inhibited bacterial growth in amylovoran-inducing medium. This growth inhibition phenotype was used in a forward genetic suppressor screen and reverse-genetics tests to identify several genes involved in lipopolysaccharide production, which, when mutated, restored the ability of the ΔyibD ΔrfbX mutant overexpressing yibD to grow in amylovoran-inducing medium. Remarkably, all the lipopolysaccharide gene mutants tested were defective in lipopolysaccharide and amylovoran production. These results reveal a genetic connection between amylovoran and lipopolysaccharide production in E. amylovoraIMPORTANCE This study discovered previously unknown genetic connections between exopolysaccharide and lipopolysaccharide production in the fire blight pathogen Erwinia amylovora This represents a step forward in our understanding of the biology underlying the production of these two macromolecules. Fire blight is an economically important disease that impacts the production of apples and pears worldwide. Few fire blight control measures are available, and growers rely heavily on antibiotic applications at bloom time. Both exopolysaccharide and lipopolysaccharide are E. amylovora virulence factors. Our results indicate that the overexpression of the yibD gene in E. amylovora disrupts both lipopolysaccharide production and exopolysaccharide production. This effect could potentially be used as the basis for the development of an antivirulence treatment for the prevention of fire blight disease.


Asunto(s)
Proteínas Bacterianas/metabolismo , Erwinia amylovora/genética , Proteínas de Transporte de Membrana/metabolismo , Enfermedades de las Plantas/microbiología , Polisacáridos Bacterianos/biosíntesis , Proteínas Bacterianas/genética , Erwinia amylovora/metabolismo , Erwinia amylovora/patogenicidad , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Malus/microbiología , Proteínas de Transporte de Membrana/genética , Mutación/genética , Operón , Pyrus/microbiología , Virulencia/genética
9.
BMC Genomics ; 21(1): 261, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32228459

RESUMEN

BACKGROUND: The nucleotide second messengers, i.e., guanosine tetraphosphate and pentaphosphate [collectively referred to as (p) ppGpp], trigger the stringent response under nutrient starvation conditions and play an essential role in virulence in the fire blight pathogen Erwinia amylovora. Here, we present transcriptomic analyses to uncover the overall effect of (p) ppGpp-mediated stringent response in E. amylovora in the hrp-inducing minimal medium (HMM). RESULTS: In this study, we investigated the transcriptomic changes of the (p) ppGpp0 mutant under the type III secretion system (T3SS)-inducing condition using RNA-seq. A total of 1314 differentially expressed genes (DEGs) was uncovered, representing more than one third (36.8%) of all genes in the E. amylovora genome. Compared to the wild-type, the (p) ppGpp0 mutant showed down-regulation of genes involved in peptide ATP-binding cassette (ABC) transporters and virulence-related processes, including type III secretion system (T3SS), biofilm, and motility. Interestingly, in contrast to previous reports, the (p) ppGpp0 mutant showed up-regulation of amino acid biosynthesis genes, suggesting that it might be due to that these amino acid biosynthesis genes are indirectly regulated by (p) ppGpp in E. amylovora or represent specific culturing condition used. Furthermore, the (p) ppGpp0 mutant exhibited up-regulation of genes involved in translation, SOS response, DNA replication, chromosome segregation, as well as biosynthesis of nucleotide, fatty acid and lipid. CONCLUSION: These findings suggested that in HMM environment, E. amylovora might use (p) ppGpp as a signal to activate virulence gene expression, and simultaneously mediate the balance between virulence and survival by negatively regulating DNA replication, translation, cell division, as well as biosynthesis of nucleotide, amino acid, fatty acid, and lipid. Therefore, (p) ppGpp could be a promising target for developing novel control measures to fight against this devastating disease of apples and pears.


Asunto(s)
Cromosomas Bacterianos/genética , Erwinia amylovora/genética , Erwinia amylovora/patogenicidad , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Guanosina Pentafosfato/genética , Guanosina Pentafosfato/metabolismo , RNA-Seq , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Virulencia/genética , Virulencia/fisiología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
10.
Curr Microbiol ; 77(5): 875-881, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31938805

RESUMEN

A variety of potential inhibitors were tested for the first time for the suppression of Erwinia amylovora, the causal agent of fire blight in apples and pears. Strain variability was evident in susceptibility to inhibitors among five independently isolated virulent strains of E. amylovora. However, most strains were susceptible to culture supernatants from strains of Bacillus spp., and particularly to the recently described species B. nakamurai. Minimal inhibitory concentrations (MICs) were 5-20% (vol/vol) of culture supernatant from B. nakamurai against all five strains of E. amylovora. Although Bacillus species have been previously reported to produce lipopeptide inhibitors of E. amylovora, matrix-assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) and column chromatography indicated that the inhibitor from B. nakamurai was not a lipopeptide, but rather a novel inhibitor.


Asunto(s)
Antibiosis , Bacillus/fisiología , Erwinia amylovora/patogenicidad , Enfermedades de las Plantas/prevención & control , Bacillus/crecimiento & desarrollo , Medios de Cultivo , Malus/microbiología , Pruebas de Sensibilidad Microbiana , Enfermedades de las Plantas/microbiología , Pyrus/microbiología
11.
Plant Biotechnol J ; 18(3): 845-858, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31495052

RESUMEN

The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty-seven transgenic lines were screened to identify CRISPR/Cas9-induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss-of-function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off-target sites revealed no mutation event. Moreover, our construct contained a heat-shock inducible FLP/FRT recombination system designed specifically to remove the T-DNA harbouring the expression cassettes for CRISPR/Cas9, the marker gene and the FLP itself. Six plant lines with reduced susceptibility to the pathogen were heat-treated and screened by real-time PCR to quantify the exogenous DNA elimination. The T-DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR/Cas9-FLP/FRT gene editing system for the production of edited apple plants carrying a minimal trace of exogenous DNA.


Asunto(s)
Sistemas CRISPR-Cas , Resistencia a la Enfermedad/genética , Erwinia amylovora/patogenicidad , Edición Génica , Malus/genética , Enfermedades de las Plantas/genética , ADN Bacteriano , Técnicas de Silenciamiento del Gen , Malus/microbiología , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/microbiología
12.
Sci Rep ; 9(1): 14017, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31570749

RESUMEN

The fire blight pathogen, Erwinia amylovora (EA), causes significant economic losses in rosaceae fruit crops. Recent genome sequencing efforts have explored genetic variation, population structure, and virulence levels in EA strains. However, the genomic aspects of population bottlenecks and selection pressure from geographical isolation, host range, and management practices are yet unexplored. We conducted a comprehensive analysis of whole genome sequences of 41 strains to study genetic diversity, population structure, and the nature of selection affecting sub-population differentiation in EA. We detected 72,741 SNPs and 2,500 Indels, representing about six-fold more diversity than previous reports. Moreover, nonsynonymous substitutions were identified across the effector regions, suggesting a role in defining virulence of specific strains. EA plasmids had more diversity than the chromosome sequence. Population structure analysis identified three distinct sub-groups in EA strains, with North American strains displaying highest genetic diversity. A five kilobase genomic window scan showed differences in genomic diversity and selection pressure between these three sub-groups. This analysis also highlighted the role of purifying and balancing selection in shaping EA genome structure. Our analysis provides novel insights into the genomic diversity and selection forces accompanying EA population differentiation.


Asunto(s)
Erwinia amylovora/genética , Enfermedades de las Plantas/microbiología , Erwinia amylovora/patogenicidad , Variación Genética , Genoma Bacteriano/genética , Filogenia , Selección Genética , Análisis de Secuencia de ADN , Virulencia
13.
Sci Rep ; 9(1): 11530, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31395913

RESUMEN

Fire blight is a devastating disease of apple and pear caused by the bacterium Erwinia amylovora. One of its main symptoms is canker formation on perennial tissues which may lead to the death of limbs and/or the entire tree. E. amylovora overwinters in cankers which play an important role in initiating fire blight epidemics. However, knowledge of pathogen biology in cankers is scarce, in part due to limitations of classical microbiology methods and the inability of most molecular techniques to distinguish live from dead cells. In this work, a viability digital PCR (v-dPCR) protocol using propidium monoazide (PMA) was developed, allowing for the first time the selective detection and absolute quantification of E. amylovora live cells in apple and pear cankers collected in two time periods. Some key factors affecting the v-dPCR performance were the maceration buffer composition, the target DNA amplicon length, the thermal cycle number and the use of sodium dodecyl sulfate or PMA enhancer for Gram-negative bacteria to improve the effect of PMA. In the future, this methodology could shed light on E. amylovora population dynamics in cankers and provide clues on the effect of management practices, host cultivar, host water/nutritional status, etc., on bacterial survival.


Asunto(s)
Erwinia amylovora/patogenicidad , Malus/genética , Enfermedades de las Plantas/genética , Supervivencia Celular/genética , Erwinia amylovora/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/microbiología , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/patogenicidad , Malus/crecimiento & desarrollo , Malus/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Pyrus/genética , Pyrus/crecimiento & desarrollo , Pyrus/microbiología , Virulencia/genética
14.
Appl Environ Microbiol ; 85(15)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31152019

RESUMEN

The Gram-negative bacterium Erwinia amylovora causes fire blight disease of apples and pears. While the virulence systems of E. amylovora have been studied extensively, relatively little is known about its parasitic behavior. The aim of this study was to identify primary metabolites that must be synthesized by this pathogen for full virulence. A series of auxotrophic E. amylovora mutants, representing 21 metabolic pathways, were isolated and characterized for metabolic defects and virulence in apple immature fruits and shoots. On detached apple fruitlets, mutants defective in arginine, guanine, hexosamine, isoleucine/valine, leucine, lysine, proline, purine, pyrimidine, sorbitol, threonine, tryptophan, and glucose metabolism had reduced virulence compared to the wild type, while mutants defective in asparagine, cysteine, glutamic acid, histidine, and serine biosynthesis were as virulent as the wild type. Auxotrophic mutant growth in apple fruitlet medium had a modest positive correlation with virulence in apple fruitlet tissues. Apple tree shoot inoculations with a representative subset of auxotrophs confirmed the apple fruitlet results. Compared to the wild type, auxotrophs defective in virulence caused an attenuated hypersensitive immune response in tobacco, with the exception of an arginine auxotroph. Metabolomic footprint analyses revealed that auxotrophic mutants which grew poorly in fruitlet medium nevertheless depleted environmental resources. Pretreatment of apple flowers with an arginine auxotroph inhibited the growth of the wild-type E. amylovora, while heat-killed auxotroph cells did not exhibit this effect, suggesting nutritional competition with the virulent strain on flowers. The results of our study suggest that certain nonpathogenic E. amylovora auxotrophs could have utility as fire blight biocontrol agents.IMPORTANCE This study has revealed the availability of a range of host metabolites to E. amylovora cells growing in apple tissues and has examined whether these metabolites are available in sufficient quantities to render bacterial de novo synthesis of these metabolites partially or even completely dispensable for disease development. The metabolomics analysis revealed that auxotrophic E. amylovora mutants have substantial impact on their environment in culture, including those that fail to grow appreciably. The reduced growth of virulent E. amylovora on flowers treated with an arginine auxotroph is consistent with the mutant competing for limiting resources in the flower environment. This information could be useful for novel fire blight management tool development, including the application of nonpathogenic E. amylovora auxotrophs to host flowers as an environmentally friendly biocontrol method. Fire blight management options are currently limited mainly to antibiotic sprays onto open blossoms and pruning of infected branches, so novel management options would be attractive to growers.


Asunto(s)
Erwinia amylovora/metabolismo , Malus/microbiología , Metaboloma , Enfermedades de las Plantas/microbiología , Erwinia amylovora/patogenicidad , Metabolómica , Virulencia
15.
mBio ; 10(3)2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138749

RESUMEN

Erwinia amylovora causes the devastating fire blight disease of apple and pear trees. During systemic infection of host trees, pathogen cells must rapidly respond to changes in their environment as they move through different host tissues that present distinct challenges and sources of nutrition. Growing evidence indicates that small RNAs (sRNAs) play an important role in disease progression as posttranscriptional regulators. The sRNA ArcZ positively regulates the motility phenotype and transcription of flagellar genes in E. amylovora Ea1189 yet is a direct repressor of translation of the flagellar master regulator, FlhD. We utilized transposon mutagenesis to conduct a forward genetic screen and identified suppressor mutations that increase motility in the Ea1189ΔarcZ mutant background. This enabled us to determine that the mechanism of transcriptional activation of the flhDC mRNA by ArcZ is mediated by the leucine-responsive regulatory protein, Lrp. We show that Lrp contributes to expression of virulence and several virulence-associated traits, including production of the exopolysaccharide amylovoran, levansucrase activity, and biofilm formation. We further show that Lrp is regulated posttranscriptionally by ArcZ through destabilization of lrp mRNA. Thus, ArcZ regulation of FlhDC directly and indirectly through Lrp forms an incoherent feed-forward loop that regulates levansucrase activity and motility as outputs. This work identifies Lrp as a novel participant in virulence regulation in E. amylovora and places it in the context of a virulence-associated regulatory network.IMPORTANCE Fire blight disease continues to plague the commercial production of apples and pears despite more than a century of research into disease epidemiology and disease control. The causative agent of fire blight, Erwinia amylovora coordinates turning on or off specific virulence-associated traits at the appropriate time during disease development. The development of novel control strategies requires an in-depth understanding of E. amylovora regulatory mechanisms, including regulatory control of virulence-associated traits. This study investigates how the small RNA ArcZ regulates motility at the transcriptional level and identifies the transcription factor Lrp as a novel participant in the regulation of several virulence-associated traits. We report that ArcZ and Lrp together affect key virulence-associated traits through integration of transcriptional and posttranscriptional mechanisms. Further understanding of the topology of virulence regulatory networks can uncover weak points that can subsequently be exploited to control E. amylovora.


Asunto(s)
Erwinia amylovora/genética , Erwinia amylovora/patogenicidad , Regulación Bacteriana de la Expresión Génica , Proteína Reguladora de Respuesta a la Leucina/genética , ARN Pequeño no Traducido/genética , Factores de Virulencia/genética , Erwinia amylovora/metabolismo , Virulencia/genética
16.
Methods Mol Biol ; 1991: 187-198, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31041773

RESUMEN

Fire blight is a perennial disease affecting apple and pear production worldwide. Development of resistant cultivars and disease control measures are crucial aspects of managing fire blight. Furthermore, the study of the causal agent, the Gram-negative bacterium Erwinia amylovora, has led to important insights into molecular plant-microbe interactions. However, fire blight does not have a suitable model host, since its host range is limited to plants with complex genetics and relatively limited resources for genetic analysis. Here, we present a rationale for using apple fruitlets as a potential fire blight model host system, and describe a protocol for quantitative fruit inoculation, bacterial growth measurement, and symptom assessment. The use of apple fruitlets is applicable to the molecular genetic analysis of E. amylovora, including high-throughput genetic screens for E. amylovora virulence-defective mutants, and is potentially useful to study host resistance and responses to E. amylovora as well.


Asunto(s)
Resistencia a la Enfermedad/genética , Erwinia amylovora/genética , Erwinia amylovora/patogenicidad , Frutas/microbiología , Interacciones Huésped-Patógeno , Malus/microbiología , Enfermedades de las Plantas/microbiología , Frutas/inmunología , Malus/inmunología , Virulencia
17.
Mol Plant Microbe Interact ; 32(10): 1448-1459, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31140921

RESUMEN

CsrA, an RNA-binding protein, binds to target transcripts and alters their translation or stability. In Erwinia amylovora, CsrA positively regulates the expression of type III secretion system (T3SS), exopolysaccharide amylovoran, and motility. In this study, the global effect of CsrA and its noncoding small RNA (ncsRNA) csrB in E. amylovora was determined by RNA-seq, and potential molecular mechanisms of CsrA-dependent virulence regulation were examined. Transcriptomic analyses under the T3SS-inducing condition revealed that mutation in the csrA gene led to differential expression of more than 20% of genes in the genome. Among them, T3SS genes and those required for cell growth and viability were significantly downregulated. On the other hand, the csrB mutant exhibited significant upregulation of most major virulence genes, suggesting an antagonistic effect of csrB on CsrA targets. Direct interaction between CsrA protein and csrB was further confirmed through the RNA electrophoretic mobility shift assay (REMSA). However, no direct interaction between CsrA and hrpL and hrpS transcripts was detected, suggesting that HrpL and HrpS are not targets of CsrA, whereas three CsrA targets (relA, rcsB, and flhD) were identified and confirmed by REMSA, site-directed mutagenesis, and LacZ reporter gene assays. These findings might partially explain how CsrA positively controls E. amylovora virulence by targeting major regulators at the posttranscriptional level.


Asunto(s)
Proteínas Bacterianas , Erwinia amylovora , Regulación Bacteriana de la Expresión Génica , Proteínas de Unión al ARN/metabolismo , Virulencia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Erwinia amylovora/genética , Erwinia amylovora/patogenicidad , Regulación Bacteriana de la Expresión Génica/genética , Mutación , Proteínas de Unión al ARN/genética , Transcriptoma , Virulencia/genética
18.
J Bacteriol ; 201(11)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30885930

RESUMEN

Elongation factor P (EF-P) facilitates the translation of certain peptide motifs, including those with multiple proline residues. EF-P must be posttranslationally modified for full functionality; in enterobacteria, this is accomplished by two enzymes, namely, EpmA and EpmB, which catalyze the ß-lysylation of EF-P at a conserved lysine position. Mutations to efp or its modifying enzymes produce pleiotropic phenotypes, including decreases in virulence, swimming motility, and extracellular polysaccharide production, as well as proteomic perturbations. Here, we generated targeted deletion mutants of the efp, epmA, and epmB genes in the Gram-negative bacterium Erwinia amylovora, which causes fire blight, an economically important disease of apples and pears. As expected, the Δefp, ΔepmA, and ΔepmB mutants were all defective in virulence on apples, and all three mutants were complemented in trans with plasmids bearing wild-type copies of the corresponding genes. By analyzing spontaneous suppressor mutants, we found that mutations in the hrpA3 gene partially or completely suppressed the colony size, extracellular polysaccharide production, and virulence phenotypes in apple fruits and apple tree shoots but not the swimming motility phenotypes of the Δefp, ΔepmA, and ΔepmB mutants. The deletion of hrpA3 alone did not produce any alterations in any characteristics measured, indicating that the HrpA3 protein is not essential for any of the processes examined. The hrpA3 gene encodes a putative DEAH-box ATP-dependent RNA helicase. These results suggest that the loss of the HrpA3 protein at least partially compensates for the lack of the EF-P protein or ß-lysylated EF-P.IMPORTANCE Fire blight disease has relatively few management options, with antibiotic application at bloom time being chief among them. As modification to elongation factor P (EF-P) is vital to virulence in several species, both EF-P and its modifying enzymes make attractive targets for novel antibiotics. However, it will be useful to understand how bacteria might overcome the hindrance of EF-P function so that we may be better prepared to anticipate bacterial adaptation to such antibiotics. The present study indicates that the mutation of hrpA3 could provide a partial offset for the loss of EF-P activity. In addition, little is known about EF-P functional interactions or the HrpA3 predicted RNA helicase, and our genetic approach allowed us to discern a novel gene associated with EF-P function.


Asunto(s)
Proteínas Bacterianas/genética , Erwinia amylovora/genética , Regulación Bacteriana de la Expresión Génica , Hidroliasas/genética , Factores de Elongación de Péptidos/genética , ARN Helicasas/genética , Proteínas Bacterianas/metabolismo , Erwinia amylovora/enzimología , Erwinia amylovora/patogenicidad , Eliminación de Gen , Prueba de Complementación Genética , Hidroliasas/metabolismo , Lisina/metabolismo , Malus/microbiología , Mutación , Factores de Elongación de Péptidos/deficiencia , Fenotipo , Enfermedades de las Plantas/microbiología , Plásmidos/química , Plásmidos/metabolismo , ARN Helicasas/deficiencia , Virulencia
19.
Appl Environ Microbiol ; 85(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30366999

RESUMEN

Cyclic di-GMP (c-di-GMP) is a ubiquitous bacterial second messenger molecule that is an important virulence regulator in the plant pathogen Erwinia amylovora Intracellular levels of c-di-GMP are modulated by diguanylate cyclase (DGC) enzymes that synthesize c-di-GMP and by phosphodiesterase (PDE) enzymes that degrade c-di-GMP. The regulatory role of the PDE enzymes in E. amylovora has not been determined. Using a combination of single, double, and triple deletion mutants, we determined the effects of each of the four putative PDE-encoding genes (pdeA, pdeB, pdeC, and edcA) in E. amylovora on cellular processes related to virulence. Our results indicate that pdeA and pdeC are the two phosphodiesterases most active in virulence regulation in E. amylovora Ea1189. The deletion of pdeC resulted in a measurably significant increase in the intracellular pool of c-di-GMP, and the highest intracellular concentrations of c-di-GMP were observed in the Ea1189 ΔpdeAC and Ea1189 ΔpdeABC mutants. The regulation of virulence traits due to the deletion of the pde genes showed two patterns. A stronger regulatory effect was observed on amylovoran production and biofilm formation, where both Ea1189 ΔpdeA and Ea1189 ΔpdeC mutants exhibited significant increases in these two phenotypes in vitro In contrast, the deletion of two or more pde genes was required to affect motility and virulence phenotypes. Our results indicate a functional redundancy among the pde genes in E. amylovora for certain traits and indicate that the intracellular degradation of c-di-GMP is mainly regulated by pdeA and pdeC, but they also suggest a role for pdeB in regulating motility and virulence.IMPORTANCE Precise control of the expression of virulence genes is essential for successful infection of apple hosts by the fire blight pathogen, Erwinia amylovora The presence and buildup of a signaling molecule called cyclic di-GMP enables the expression and function of some virulence determinants in E. amylovora, such as amylovoran production and biofilm formation. However, other determinants, such as those for motility and the type III secretion system, are expressed and functional when cyclic di-GMP is absent. Here, we report studies of enzymes called phosphodiesterases, which function in the degradation of cyclic di-GMP. We show the importance of these enzymes in virulence gene regulation and the ability of E. amylovora to cause plant disease.


Asunto(s)
Proteínas Bacterianas/genética , Biopelículas , Erwinia amylovora/fisiología , Hidrolasas Diéster Fosfóricas/genética , Polisacáridos Bacterianos/biosíntesis , Proteínas Bacterianas/metabolismo , Erwinia amylovora/genética , Erwinia amylovora/patogenicidad , Hidrolasas Diéster Fosfóricas/metabolismo , Enfermedades de las Plantas/microbiología , Virulencia
20.
Int J Mol Sci ; 19(11)2018 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-30373239

RESUMEN

In their natural environment, plants are generally confronted with multiple co-occurring stresses. However, the interaction between stresses is not well known and transcriptomic data in response to combined stresses remain scarce. This study aims at characterizing the interaction between transcriptomic responses to biotic stress and nitrogen (N) limitation. Plants were grown in low or full N, infected or not with Erwinia amylovora (Ea) and plant gene expression was analyzed through microarray and qRT-PCR. Most Ea-responsive genes had the same profile (induced/repressed) in response to Ea in low and full N. In response to stress combination, one third of modulated transcripts responded in a manner that could not be deduced from their response to each individual stress. Many defense-related genes showed a prioritization of their response to biotic stress over their response to N limitation, which was also observed using Pseudomonas syringae as a second pathosystem. Our results indicate an interaction between transcriptomic responses to N and biotic stress. A small fraction of transcripts was prioritized between antagonistic responses, reflecting a preservation of the plant defense program under N limitation. Furthermore, this interaction also led to a complex and specific response in terms of metabolism and cellular homeostasis-associated genes.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo , Estrés Fisiológico , Arabidopsis/metabolismo , Arabidopsis/microbiología , Erwinia amylovora/patogenicidad , Nitrógeno/deficiencia , Inmunidad de la Planta , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...